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1. Introduction

Recently there has been considerable works on three-dimensional superconformal theories

with larger supersymmetries. Bagger and Lambert (BL) has proposed an N = 8 supercon-

formal model with three-algebra structure and SO(8) R-symmetry as a theory on multiple

M2 branes [1 – 5]. More recently Gaiotto and Witten (GW) has proposed N = 4 supercon-

formal Chern-Simons models with SO(4) R-symmetry classified by super-algebras [6].

In this work we generalize the Gaiotto-Witten’s work to include twisted hyper-

multiplets. Quiver theories appear naturally with two types of hyper-multiplets alternating

between gauge groups where the quiver diagram is linear or circular with multiple nodes.

The Bagger-Lambert theory with SO(4) gauge group appears naturally as a simplest kind

of the quiver theory. Our work is partially motivated by attempt to understand the Bagger-

Lambert theory with SO(4) gauge group in the context of the Gaiotto-Witten theory.

The number of supersymmetries of three-dimensional superconformal Chern-Simons

theories has a natural division with N = 3 [7]. It is rather straightforward to have the

theories with N ≤ 3, and there has been some recent work on N = 2, 3 superconformal

theories [8]. For the conformal theory of M2 branes, one needs more supersymmetry [9]

and the recent works related to the BL theory and the GW theory can be regarded as

concrete steps toward this direction.

The BL theory was proposed as a superconformal field theory on coincident M2 branes.

The BL theory is a superconformal Chern-Simons theory with maximal supersymmetry and

SO(8) R-symmetry. It is parity even [10, 11] and its superconformal symmetry group is
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OSp(8|4). The BL theory is supposed to describe two M2 branes sitting at the origin of R
8

with certain discrete symmetry [12, 13]. For the additional many results on the BL theory,

see [14 – 39].

Meanwhile, the GW theories are N = 4 superconformal Chern-Simons theories with

SO(4) R-symmetry and OSp(4|4) as the superconformal group. The GW theories have

two gauge groups of opposite Chern-Simons coefficient, and the possible gauge fields are

U(N) × U(M) or O(N) × Sp(M). The matter field belongs to the bi-fundamental hyper-

multiplet (qAα , ψ
A
α̇ ) where the scalar field qAα and the spinor field ψAα̇ belong to (2,1) and

(1,2) representations of the SU(2)L × SU(2)R = SO(4) R-symmetry group.

The GW theories were developed as defect conformal field theories dual to the half-

supersymmetric Janus geometry [40]. The four-dimensional Janus field theory can have at

most eight supersymmetries, suggesting that the possible existence of the three-dimensional

N = 4 superconformal field theories. The GW theories form a complete class of the

superconformal Chern-Simons theories with a single bi-fundamental hyper-multiplet.

On the other hand, the BL theory with SO(4) gauge group has SO(8) R-symmetry. If

one keeps only a half of the supersymmetry, the R-symmetry group would be reduced to

SO(4), and the matter field splits to one hyper-multiplet and one twisted hyper-multiplet.

The twisted hyper-multiplet (q̃Aα̇ , ψ̃
A
α ) belongs to (1,2) and (2,1) representations of the

SU(2)L×SU(2)R R-symmetry group. This suggests that there could be a generalization of

the GW theories with additional twisted hyper-multiplet. Indeed, the present work realizes

this possibility.

Another motivation for our work arises from consideration of the so-called M-crystal

model [41 – 43] of AdS4/CFT3 dual pairs. This M-crystal model is the M2-brane counter-

part of the famous brane-tiling model [45 – 47] for D3-brane gauge theories. The M-crystal

model graphically encodes certain information on the world-volume theories of M2-branes

probing toric Calabi-Yau four-fold (CY4) cones. When the CY4 cone is a product of two

singular ALE spaces, the world-volume theory has N = 4 supersymmetry.

In ref. [43], it was shown how to derive an abelian gauge theory from a given M-crystal

model. In particular, for CY4 = (C2/Zn)
2, it was found that the abelian theory must

contain both types of hyper-multiplets, for a somewhat similar reason to the BL theory

case. The derivation of [43] however was incomplete, as the kinetic terms for the abelian

gauge fields were not determined. Nevertheless, based on the analysis of the moduli space

of vacua, the gauge fields were argued to be non-dynamical. Naturally, our work provides

a possible candidate theory for the corresponding CFT3.

In section 2, we begin by reviewing the GW construction. In this construction, one

uses the N = 1 theory with an SO(3) global symmetry and adjusts the coupling constants

to enhance the global symmetry to the SO(4) R-symmetry, which does not commute with

the N = 1 supercharge. The resulting theory has N = 4 supersymmetry. We employ a

similar method to include additional twisted hyper-multiplet to the theory and find new

N = 4 superconformal field theories.

As in ref. [6], the gauge groups and the matter contents are classified by certain super-

algebras. The restriction is quite severe, so that to have non-trivial interactions between

the two types of hyper-multiplets, the theory must be a linear quiver gauge theory (pos-
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sibly forming a closed loop) with the two types of hyper-multiplets alternating between

neighboring gauge groups. We also present how to take a mass deformation of the general

N = 4 theories without breaking any supersymmetry or SO(4) R-symmetry.

In section 3, we discuss how our construction is related to other works. First, we

show explicitly that the BL model of SO(4) gauge group with its mass deformation [21, 23]

is a special case of our construction. For this case, the supersymmetry is doubled by

chance. However, we suspect that our construction for two types of hyper-multiplets gets

an enhanced supersymmetry only for the BL case. The second half is devoted to the

connection to the M-crystal model. After a short review of the M-crystal model specialized

to N = 4, we show that a particular abelian quiver theory of the present paper can be

identified with the one proposed in [43] for M2-branes probing (C2/Zn)
2 orbifolds.

We conclude with some discussions on future directions in section 4.

2. N = 4 Chern-Simons theories with two types of hyper-multiplets

In this section, we start with a brief review of the GW construction of the N = 4 super-

conformal theories with only hyper-multiplets, and then present a generalization to include

twisted hyper-multiplets.

2.1 Gaiotto-Witten revisited

We start with an Sp(2n) group and let A,B indices run over a 2n-dimensional representa-

tion. We denote the anti-symmetric invariant tensor of Sp(2n) by ωAB and choose all the

generators tAB to be anti-Hermitian (2n× 2n) matrices, such that (ωACt
C
B) are symmetric

matrices. We consider a Chern-Simons gauge theory whose gauge group is a subgroup of

Sp(2n) and we denote anti-Hermitian generators of the gauge group as (tm)AB which satisfy

[tm, tn] = fmnpt
p.

Gauge field and gaugino are denoted by (Am)µ and χm, and the adjoint indices are raised

or lowered by an invariant quadratic form kmn or its inverse kmn of the gauge group. We

will also use

χAB = χm(tm)AB, χAB = χmωAC(tm)CB = χmt
m
AB .

We couple the gauge theory with a hyper-multiplet matter fields (qAα , ψ
A
α̇ ) satisfying

the reality condition

q̄αA = (qAα )† = ǫαβωABq
B
β , ψ̄Aα̇ = (ψAα̇ )† = ǫα̇β̇ωABψ

B
β̇
.

We use (α, β; α̇, β̇) doublet indices for the SU(2)L × SU(2)R R-symmetry group.

To get N = 4 supersymmetric theories, it is convenient to work in the N = 1 framework

in which (qAα , ψ
A
α̇ , F

A
α ) and ((Am)µ, χm) are the basic supermultiplets. Our conventions for

spinors and N = 1 superfields are summarized in appendix A. We start from the general

N = 1 Lagrangian with a global SU(2) symmetry which acts on the indices (α, β) and
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(α̇, β̇) simultaneously. Such a Lagrangian would take the form L = LCS + Lkin + LW ,

where

LCS =
εµνλ

4π
kmnA

m
µ ∂νA

n
λ +

εµνλ

12π
fmnpA

m
µ A

n
νA

p
λ +

ikmn
4π

χmχn, (2.1)

Lkin =
1

2

(
−Dq̄αADqAα + F̄αAF

A
α + iψ̄α̇AD/ψ

A
α̇ − iψ̄α̇Aχ

A
Bq

B
α + iq̄αAχ

A
Bψ

B
α̇

)

=
1

2
ωAB

[
ǫαβ

(
−DqAαDqBβ + FAα F

B
β

)
+ iǫα̇β̇ψAα̇D/ψ

B
β̇

]
− iǫα̇βψAα̇χABq

B
β ,

LW = −πTAB,CD
(
ǫαβǫγδFAα q

B
β q

C
γ q

D
δ +

i

2
ǫα̇β̇ǫγδψAα̇ψ

B
β̇
qCγ q

D
δ + iǫα̇βǫγ̇δψAα̇ q

B
β ψ

C
γ̇ q

D
δ

)
,

where Dµq
A
α = ∂µq

A
α +Amµ(t

m)ABq
B
α . The superpotential takes the form

W =
π

4
TAB,CDǫ

αβǫγδqAα q
B
β q

C
γ q

D
δ . (2.2)

Here the superpotential coupling TAB,CD is anti-symmetric under the permutation of A,B

or C,D, and symmetric under the exchange of the pairs (AB) with (CD). For a suitable

choice of TAB,CD, the Lagrangian becomes invariant under two SU(2) rotations that act

on qAα and ψAα̇ separately and therefore N = 4 supersymmetric. Let us now examine each

part of the Lagrangian which needs to be separately invariant under the SO(4).

Yukawa coupling. As the gaugino field χm is a purely auxiliary field, we integrate it

out to get a (q2ψ2) term,

L =
ikmn
4π

χmχn − iχm

(
ǫα̇βψAα t

m
ABq

B
β

)
+ · · ·

=
ikmn
4π

(
χm − 2πǫα̇βψAα̇ t

m
ABq

B
β

)(
χn − 2πǫγ̇δψCγ̇ t

n
CDq

D
δ

)

−iπkmntmABtnCDǫα̇βǫγ̇δψAα̇ qBβ ψCγ̇ qDδ + · · · . (2.3)

Combining this with the other (q2ψ2) terms arising from the superpotential LW , one finds

−iπqAα qBβ ψCγ̇ ψDδ̇
(
kmnt

m
ACt

n
BDǫ

αγ̇ǫβδ̇ + 1
2TAB,CDǫ

αβǫγ̇δ̇ + TAC,BDǫ
αγ̇ǫβδ̇

)
. (2.4)

This expression has to be SU(2)L× SU(2)R-invariant on its own. It implies that the terms

containing contractions between dotted and undotted indices must vanish. For the Yukawa

coupling, it suffices to require that the part proportional to q
(A
(α q

B)
β) should vanish:

TAC,BD + TBC,AD + kmn (tmACt
n
BD + tmBCt

n
AD) = 0. (2.5)

In ref. [6], this equation was shown to determine the coupling constants,

TAB,CD =
1

3
kmn (tmACt

n
BD − tmBCt

n
AD) . (2.6)

and imposes a constraint on tmAB which the authors called the “fundamental identity”,

kmnt
m
(ABt

n
C)D = 0, (2.7)
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where the indices A,B,C are symmetrized over cyclic permutations. In ref. [6], it was

also noticed that this identity can be understood as the Jacobi identity for three fermionic

generators of a super Lie algebra,

[Mm,Mn] = fmnpM
p, [Mm, QA] = QB(tm)BA, {QA, QB} = tmABMm. (2.8)

This turns out to be a rather strong constraint on the field content of the theory. Namely,

the gauge group and matter should be such that the gauge symmetry algebra can be ex-

tended to a super Lie algebra by adding fermionic generators associated to hyper-multiplets.

The final expression for the (q2ψ2) term in the Lagrangian is

Lq2ψ2 = −iπqAα qBβ ψCγ ψDδ ǫαβǫγ̇δ̇kmntmACtnBD
= −iπkmnǫαβǫγ̇δ̇mαγ̇nβδ̇

(
mαγ̇ ≡ qAα t

m
ACψ

C
γ̇

)
. (2.9)

Bosonic potential. We present here the computation of bosonic potential in some detail

for later convenience. In terms of the “moment map”, µmαβ ≡ tmABq
A
α q

B
β [6], we can write

W =
π

6
ǫαβǫγδkmnµ

m
αγµ

n
βδ. (2.10)

To compute the bosonic potential, it is useful to note

ωABǫαβ
∂µmγδ
∂qAα

∂µnκρ

∂qBβ
= ǫγκµ

mn
δρ + ǫγρµ

mn
δκ + ǫδκµ

mn
γρ + ǫδρµ

mn
γκ , (2.11)

where

µmnαβ ≡ (ωtmtn)ABq
A
α q

B
β .

The potential term is

V =
1

2
ǫαβω

AB ∂W

∂qAα

∂W

∂qBβ
=

2π2

9
ǫαγµ

mn
βδ µ

αβ
m µγδn

=
π2

9
ǫαγf

mnpµp,βδµ
αβ
m µγδn +

π2

9
ǫαγǫβδǫκρµ

mn,κρµαβm µγδn . (2.12)

As explained in ref. [6], we apply the fundamental identity (2.7) to rotate the upper indices

(αβκ) in the second term. After some manipulations, we find

V =
π2

9
ǫαγf

mnpµp,βδµ
αβ
m µγδn − 2π2

9
ǫαγµ

nm
βδ µ

αβ
m µγδn . (2.13)

Taking the average of the first line of (2.12) and (2.13), we arrive at the final expression,

V =
π2

6
fmnp(µ

m)αβ(µ
n)βγ(µ

p)γα. (2.14)
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Full theory. To summarize, the Gaiotto-Witten theory in a manifestly N = 4 super-

symmetric notation without auxiliary fields consists of the Lagrangian

L =
εµνλ

4π

(
kmnA

m
µ ∂νA

n
λ +

1

3
fmnpA

m
µ A

n
νA

p
λ

)
+

1

2
ωAB

(
−ǫαβDqAαDqBβ + iǫα̇β̇ψAα̇D/ψ

B
β̇

)

−iπkmnǫαβǫγ̇δ̇mαγ̇nβδ̇ −
π2

6
fmnp(µ

m)αβ(µ
n)βγ(µ

p)γα, (2.15)

and the supersymmetry transformation rules

δqAα = iηα
α̇ψAα̇ , δAmµ = 2πiηαα̇γµ

m
αα̇,

δψAα̇ =

[
D/ qAα +

2π

3
(tm)ABq

B
β (µm)βα

]
ηαα̇. (2.16)

The supersymmetry parameter η is a Majorana spinor and transform in the (2,2) repre-

sentation of SU(2)L × SU(2)R.

The classical supergroups related to the GW models are U(N |M) and OSp(N |M). The

gauge groups are product groups U(N)×U(M) or O(N)×Sp(M) with equal and opposite

Chern-Simons coefficients for the two factors. The matter fields belong to a bi-fundamental

representation of the product gauge group. Of course, one can have a multiple embedding

of tm in Sp(2n), resulting in many copies of the GW models, possibly with different gauge

group pairs, and no coupling between different blocks of GW models.

2.2 Adding twisted hyper-multiplets

Let us try to include the twisted hyper-multiplets. We denote them by (q̃Aα̇ , ψ̃
A
α , F̃

A
α̇ ) and

define their moment map and its super-partner [6] as in the untwisted case.

µ̃m
α̇β̇

≡ t̃mAB q̃
A
α̇ q̃

B
β̇
, ̃mα̇α ≡ q̃Aα̇ t̃

m
ABψ̃

B
α . (2.17)

Both types of hyper-multiplets share the same gauge symmetry, so the structure constants

fmnp and the quadratic form kmn are identical. However, they can take different represen-

tations, so in general the generators t̃m are different from tm. Strictly speaking, we should

distinguish the A,B indices of hyper-multiplets from those of twisted hyper-multiplets, but

we suppress the distinction to avoid clutter.

The construction of LCS and Lkin proceeds in the same way as before. The Yukawa

and bosonic potential terms become more complicated due to the mixing of the hyper and

twisted hyper-multiplets. We need to make those terms SU(2)L × SU(2)R R-symmetric by

a suitable choice of the superpotential. The unmixed terms can all be made R-symmetric

by introducing the super-potential

W0 =
π

6
ǫαβǫγδkmnµ

m
αγµ

n
βδ +

π

6
ǫα̇β̇ǫγ̇δ̇kmnµ̃

m
α̇γ̇µ̃

n
β̇δ̇
, (2.18)

provided that the fundamental identity (2.7) holds for both of the matrices tmAB and t̃mAB.

The hyper and twisted hyper-multiplets therefore give two (in general independent) exten-

sions of the gauge symmetry algebra to a super Lie algebra.
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There may be many copies of the simple GW models in many pairs of the gauge groups

related to the supergroups. The key point is that the gauge group pairs for the twisted

hyper-multiplets do not need to coincide with those for the hyper-multiplets. This allows

the interaction between different copies of the GW model for hyper-multiplets, leading to

a quiver theory. While there may be many sets of quivers, one can focus on one irreducible

quiver theory where every part of theory are interacting with each other.

Now we focus on possible R-symmetry breaking terms due to the mixed interactions.

Yukawa coupling. We first integrate out the gaugino,

χm = 2π
(
ǫα̇βψAα̇ t

m
ABq

B
β + ǫαβ̇ψ̃Aα t̃

m
AB q̃

B
β̇

)
. (2.19)

Computing the Yukawa term, we find a cross term from the gaugino squared,

LYukawa = − 2πiǫαβ̇ǫγ̇δkmnt
m
AB t̃

n
CDq

A
αψ

B
β̇
q̃Cγ̇ ψ̃

D
δ + (unmixed), (2.20)

which is not SO(4)R invariant by itself. To restore the R-symmetry, we try adding some

mixed terms to the superpotential. The most general form allowed by the diagonal SU(2)

and gauge symmetries is

∆W = πS̃AB,CDǫ
αβǫγ̇δ̇qAα q

B
β q̃

C
γ̇ q̃

D
δ̇

+ πSAB,CDǫ
αγ̇ǫβδ̇qAα q

B
β q̃

C
γ̇ q̃

D
δ̇
, (2.21)

where the coupling constants S̃ and S satisfy

S̃AB,CD = −S̃BA,CD = −S̃AB,DC , SAB,CD = SBA,CD = SAB,DC .

The additional superpotential yields some Yukawa terms which are themselves R-invariant,

∆L(1)
Yukawa = −iπS̃AB,CD

(
ǫα̇β̇ǫγ̇δ̇ψAα̇ψ

B
β̇
q̃Cγ̇ q̃

D
δ̇

+ ǫαβǫγδqAα q
B
β ψ̃

C
γ ψ̃

D
δ

)
(2.22)

−iπSAB,CD
(
ǫα̇γ̇ǫβ̇δ̇ψAα̇ψ

B
β̇
q̃Cγ̇ q̃

D
δ̇

+ ǫαγǫβδqAα q
B
β ψ̃

C
γ ψ̃

D
δ + 2ǫαγǫβ̇δ̇qAαψ

B
β̇
ψ̃Cγ q̃

D
δ̇

)
,

and those which are not,

∆L(2)
Yukawa = −2πi

(
2S̃AB,CDǫ

αβ̇ǫγ̇δ + SAB,CDǫ
αγ̇ǫβ̇δ

)
qAαψ

B
β̇
q̃Cγ̇ ψ̃

D
δ . (2.23)

It is possible to combine (2.20) and (2.23) in an R-symmetric way,

kmnt
m
AB t̃

n
CDǫ

αβ̇ǫγ̇δ + 2S̃AB,CDǫ
αβ̇ǫγ̇δ + SAB,CDǫ

αγ̇ǫβ̇δ ∼ ǫαδǫβ̇γ̇ , (2.24)

by using an identity for the diagonal SU(2): ǫαβ̇ǫγ̇δ + ǫαγ̇ǫδβ̇ + ǫαδǫβ̇γ̇ = 0. That uniquely

determines the two coupling constants of ∆W :

S̃AB,CD = 0, SAB,CD = −kmntmAB t̃nCD. (2.25)
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Bosonic potential. The superpotential is W = W0 + ∆W , where

W0 =
π

6
ǫαβǫγδkmnµ

m
αγµ

n
βδ +

π

6
ǫα̇β̇ǫγ̇δ̇kmnµ̃

m
α̇γ̇µ̃

n
β̇δ̇
, (2.26)

∆W = −πǫαβ̇ǫγδ̇kmnµmαγµ̃nβ̇δ̇. (2.27)

We need to compute the mixed term V |q4q̃2 in the bosonic potential and check its R-

invariance. The computation of the other mixed term V |q2q̃4 is similar. There are two

contributions to V |q4q̃2 ,

V |q4q̃2 = ǫαβω
AB ∂W0

∂qAα

∂∆W

∂qBβ
+

1

2
ǫα̇β̇ω

AB ∂∆W

∂q̃Aα̇

∂∆W

∂q̃B
β̇

= −4π2

3
ǫαγ̇µ

mn
βδ µ

αβ
m µ̃γ̇δ̇n + 2π2ǫαγ µ̃

mn
β̇δ̇
µαβm µγδn . (2.28)

Using the trick explained below (2.12) again, we can rewrite the first term as

−π2fmnp(µ
m)αβ(µ

n)βγ(µ̃
p)γ̇α̇.

The second term is decomposed into those proportional to µ̃
[mn]

(β̇δ̇)
or µ̃

(mn)

[β̇δ̇]
. The former

precisely cancels against the above (first) term, and we are left with the latter which is

indeed R-invariant,

V |q4q̃2 = −π2(µ̃mn)γ̇γ̇(µm)αβ(µn)
β
α. (2.29)

Combining all the mixed and unmixed terms, we obtain the full bosonic potential,

V =
π2

6
fmnp(µ

m)αβ(µ
n)βγ(µ

p)γα +
π2

6
fmnp(µ̃

m)αβ(µ̃
n)βγ(µ̃

p)γα

−π2(µ̃mn)γ̇γ̇(µm)αβ(µn)
β
α − π2(µmn)γγ(µ̃m)α̇

β̇
(µ̃n)

β̇
α̇. (2.30)

Full theory. In summary, we have found the generalization of Gaiotto-Witten theory

which includes both hyper and twisted hyper-multiplets. The full Lagrangian is given by

L =
εµνλ

4π

(
kmnA

m
µ ∂νA

n
λ +

1

3
fmnpA

m
µ A

n
νA

p
λ

)

+
1

2
ωAB

(
−ǫαβDqAαDqBβ + iǫα̇β̇ψAα̇D/ψ

B
β̇

)
+

1

2
ω̃AB

(
−ǫα̇β̇Dq̃Aα̇Dq̃Bβ̇ + iǫαβψ̃AαD/ ψ̃

B
β

)

−iπkmnǫαβǫγ̇δ̇mαγ̇nβδ̇ − iπkmnǫ
α̇β̇ǫγδ ̃mα̇γ ̃

n
β̇δ

+ 4πikmnǫ
αγǫβ̇δ̇m

αβ̇
̃n
δ̇γ

+iπkmn

(
ǫα̇γ̇ǫβ̇δ̇µ̃m

α̇β̇
ψAγ̇ t

n
ABψ

B
δ̇

+ ǫαγǫβδµmαβψ̃
A
γ t̃

n
ABψ̃

B
δ

)

−π
2

6
fmnp(µ̃

m)α̇
β̇
(µ̃n)β̇γ̇(µ̃

p)γ̇α̇ − π2

6
fmnp(µ̃

m)αβ(µ̃
n)βγ(µ̃

p)γα

+π2(µ̃mn)γ̇γ̇(µm)αβ(µn)
β
α + π2(µmn)γγ(µ̃m)α̇

β̇
(µ̃n)

β̇
α̇, (2.31)
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G1

G2

G3

G4

G1

G2

G1 G2 G2G1 G3 G4

q

q

q

q

q

q

q

q̃

q̃

q̃ qq(a) (b)
Figure 1: Linear quiver structure of the original and extended GW theories. The gauge groups can

be either U(Ni) or alternation between O(Ni) and Sp(Mi). Dashed lines denote hyper-multiplets

and dotted lines denote twisted hyper-multiplets.

and the supersymmetry transformation law is

δqAα = +iη α̇
α ψAα̇ ,

δq̃Aα̇ = −iηαα̇ψ̃Aα ,
δAmµ = 2πiηαα̇γµ(

m
αα̇ − ̃mα̇α),

δψAα̇ = +

[
/DqAα +

2π

3
(tm)ABq

B
β (µm)βα

]
ηαα̇ − 2π(tm)ABq

B
β (µ̃m)β̇α̇η

β

β̇
,

δψ̃Aα = −
[
/Dq̃Aα̇ +

2π

3
(t̃m)AB q̃

B
β̇

(µ̃m)β̇α̇

]
η α̇
α + 2π(t̃m)AB q̃

B
β̇

(µm)βαη
β̇

β . (2.32)

Classification in terms of quivers. When only hyper-multiplets are considered, the

classification of N = 4 Chern-Simons-matter theories boils down to that of super Lie

algebras. In the purely non-abelian case, the only possibilities are either the basic models

U(N |M) and OSp(N |M) or multiple copies of them; see figure 1(a). Naive attempts to

obtain more general quiver theories by connecting several gauge groups with bi-fundamental

hyper-multiplets immediately ruin the super Lie algebra structure.

Once both hyper and twisted hyper-multiplets are included, we have a richer variety

of theories characterized by quiver diagrams depicted in figure 1(b). If we align the gauge

group factors linearly and introduce bi-fundamental matter fields such that the two types

of hyper-multiplets alternate among the gauge groups, we can have an interacting theory of

both types of hyper-multiplets without violating the fundamental identity (2.7). Note that

the hyper and twisted hyper-multiplets give two different ways to pair the gauge groups

into supergroups. We should emphasize that, apart from trivial direct sums, these linear

quiver theories exhaust all possible (purely non-abelian) theories.

– 9 –
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The linear quiver can either have open ends or form a closed circular loop. With

U(Ni) gauge groups, the relevant quiver diagrams are the Dynkin diagrams for An or

Â2n−1, respectively. The BL-like models, which have only two gauge group factors and

both hyper-multiplets in the same representation, can be thought of as the shortest closed

loops.

Abelian CS/BF theories. Abelian theories deserve separate treatment. The theories

are defined by U(1) gauge fields Am, quaternion-valued (twisted) hyper-multiplets (qi, q̃ı̄),

the charge matrices (Qmi , Q̃
m
ı̄ ), and the CS coefficient kmn. The fundamental identity (2.7)

now reads

kmnQ
m
i Q

n
j = 0, kmnQ̃

m
ı̄ Q̃

n
̄ = 0. (2.33)

The constraint is less restrictive than in the non-abelian case, so we have more freedom to

construct new theories. We will not try to obtain a catalogue of all possible such theories.

Instead, we will consider two typical solutions to the constraint (2.33).

The first solution is to employ the linear quiver structure discussed in the non-abelian

case. The constraint (2.33) is trivially satisfied because only one hyper-multiplet and one

twisted hyper-multiplet (and not two hyper-multiplets) meet at the same gauge group.

Unlike the non-abelian case, however, the values of the charges can differ from ±1.

There is another simple way to satisfy the constraint (2.33). Divide the gauge fields

into two groups, say Am and Ãm̄, and demand that qi be charged only under Am and

q̃ı̄ only under Ãm̄. If we further demand that kmn = 0 = km̄n̄ with km̄n 6= 0, then the

constraint (2.33) is trivially satisfied. The Chern-Simons term in the Lagrangian now reads

LCS ∼ km̄nÃm̄dAn. (2.34)

This type of coupling is more commonly known as abelian BF coupling (Ã→ B, dA→ F ).

In fact, it has been known for a long time [49] that abelian BF theories interacting with

mater fields can be rendered N = 4 supersymmetric. This is an exception (the only one

we are aware of) to the N = 3 threshold mentioned in the Introduction which predates the

recent discoveries of non-abelian N ≥ 4 models.

The successes of the BL model and the GW construction partly rely on giving up the

notion of a vector multiplet. In the absence of Yang-Mills kinetic term, the gauge field

does not give rise to on-shell physical states, so it is permissible to have only the gauge

field and none of its super-partners in the Lagrangian. In contrast, the abelian BF model

of [49] maintains the whole N = 4 vector-multiplet structure and is compatible with the

Yang-Mills kinetic term.

We use the following notation for the (twisted) vector multiplets:

vector : (Am, χ
α̇β
m , sα̇β̇m ; Dαβ

m ),

twisted vector : (Ãm̄, χ̃
αβ̇
m̄ , s̃αβm̄ ; D̃α̇β̇

m̄ ),

where χ(χ̃) is the gaugino, s(s̃) is the scalar triplet and D(D̃) is the triplet of auxiliary

fields. The gauge index is raised and lowered by km̄n; for example, χ̃n ≡ knm̄χ̃m̄. In the

– 10 –
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notation of the present paper, the Lagrangian of the abelian BF theory is given by 1

L =
εµνλ

4π
km̄nÃ

m̄
µ ∂νA

n
λ +

1

4π

(
iχ̃n
αβ̇
χβ̇αn + s̃nαβD

αβ
n + D̃n

α̇β̇
sα̇β̇n

)

+
1

2
ωAB

(
−ǫαβDqAαDqBβ + iǫα̇β̇ψAα̇D/ψ

B
β̇

)
+

1

2
ω̃AB

(
−ǫα̇β̇Dq̃Aα̇Dq̃Bβ̇ + iǫαβψ̃AαD/ ψ̃

B
β

)

− i

2
sα̇β̇n (ψψ)n

α̇β̇
− i

2
s̃αβn̄ (ψ̃ψ̃)n̄αβ −

1

4
(µmn)ααs

α̇β̇
m smα̇β̇ −

1

4
(µ̃mn)α̇α̇s̃

αβ
m s̃mαβ

+χα̇βn nβα̇ + χ̃αβ̇n ̃n
β̇α

+
1

2
Dαβ
n µnαβ +

1

2
D̃α̇β̇
n̄ µ̃n̄

α̇β̇
. (2.35)

Upon integrating out (χ, χ̃, s, s̃,D, D̃), we obtain a Lagrangian which precisely coincides

with the general Lagrangian (2.31) specialized to the abelian BF assignments of CS cou-

plings and charge matrices. Note that, at first sight, the general Lagrangian (2.31) look

different from (2.35) above, because (2.31) includes both unmixed and mixed couplings

but (2.35) only allows mixed couplings. However, note that the µ3/µ̃3 parts of the bosonic

potential in (2.31) vanish for abelian theories, and the ()/(̃̃) Yukawa couplings vanish

when the kmn is a BF-type.

Finally, we note that the two solutions to the constraints (2.33) are not mutually

exclusive. In the next section, we will see some abelian theories which can be understood

from both points of view up to a change of basis for the gauge fields.

2.3 Mass deformation

So far, we have restricted our attention to superconformal theories. In this subsection, we

consider taking a mass deformation of the new theories. We will focus on mass parameters

which preserve the SO(4) R-symmetry. In the GW construction procedure, the mass term

is added to the superpotential as W = W0 +∆W +Wmass, where W0 and ∆W were defined

in (2.26), (2.27), while Wmass is given by

Wmass =
m

2
ǫαβωABq

A
α q

B
β − m′

2
ǫα̇β̇ωAB q̃

A
α̇ q̃

B
β̇
. (2.36)

Supersymmetry transformation rules should be modified accordingly, δΦ = δ0Φ + δmassΦ,

for various fields Φ, where δ0Φ are the undeformed transformation (2.32). The only non-

trivial changes due to the mass deformation are

δmassψ
A
α̇ = mqAα η

α
α̇, δmassψ̃

A
α = m′q̃Aα̇ η

α̇
α . (2.37)

A straightforward computation shows that the only additional contributions to the

Lagrangian that can potentially break the SO(4) R-symmetry come from

1

2

(
FAα
)2

= · · · − 2mπkmnǫ
αα̇ǫββ̇µmαβµ̃

n
α̇β̇
,

1

2

(
F̃Aṁ

)2
= · · · + 2m′πkmnǫ

αα̇ǫββ̇µmαβ µ̃
n
α̇β̇
. (2.38)

1See section II of [50] for a review of the abelian BF theories in the N = 2 superspace language.
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It follows that the two terms cancel against each other if and only if the two mass parameters

for the hyper and twisted hyper-multiplets are equal: m = m′. In summary, the mass-

deformed Lagrangian is

Lmass = −ωAB
(
m2

2
ǫαβqAα q

B
β +

m2

2
ǫα̇β̇ q̃Aα̇ q̃

B
β̇

+
i

2
mǫα̇β̇ψAα̇ψ

B
β − i

2
mǫαβψ̃Aα ψ̃

B
β

)

−2π

3
mkmn

(
(µm)αβ(µ

n)βα − (µ̃m)α̇β̇(µ̃
n)β̇α̇

)
, (2.39)

with deformed SUSY variation rules

δmassψ
A
α̇ = mqAα η

α
α̇, δmassψ̃

A
α = mq̃Aα̇ η

α̇
α . (2.40)

3. Bagger-Lambert theory and M-crystal model

3.1 Bagger-Lambert theory

Bagger and Lambert [2] recently constructed three-dimensional N = 8 superconformal

Chern-Simons theories, believed to describe multiple M2-branes. In their construction,

some 3-algebra with the four-index structure constant fabcd was introduced. It can be

however shown that the only possible 3-algebra is in fact SO(4) with fabcd = εabcd, once

we suppose hab = tr(tatb) is positive definite [24, 25]. We will show that, from the N = 4

perspective, the SO(4) BL model can be regarded as the GW model of the same gauge

group with additional twisted hyper-multiplet.

BL theory. Let us start with a summary of our conventions for the BL theory. We use

the mostly plus metric and mostly Hermitian eleven-dimensional Gamma matrices

ηµν = diag(−1, 1, · · · , 1), {Γµ,Γν} = 2ηµν . (3.1)

Spinors Ψa and supersymmetry parameter ε are eigenvectors of Γ012 and Γ3···10 (we use

Γ012Γ3···10 = −1) such that

Γ012Ψa = −Ψa, Γ012ε = ε, Γ3···10Ψa = Ψa, Γ3···10ε = −ε. (3.2)

Here a denote SO(4) gauge indices. The Lagrangian for the SO(4) BL model reads

L = −1

2
DµX

a
ID

µXa
I +

i

2
Ψ̄aΓµDµΨ

a − i

4κ
εabcd Ψ̄aXb

IX
c
JΓIJΨd

+
κǫµνλ

2

(
Aabµ ∂νÃ

ab
λ +

2

3
Aabµ Ã

ac
ν Ã

bc
λ

)
− 1

12κ2

∑

IJK,a

(εabcdXb
IX

c
JX

d
K)2, (3.3)

and the supersymmetry transformation rules are

δXa
I = iε̄ΓIΨ

a,

δΨa = /DXa
I Γ

Iε+
1

6κ
εabcdXb

IX
c
JX

d
KΓIJKε,

δÃabµ = − i

κ
εabcd ε̄ΓµΓ

IXc
IΨ

d. (3.4)
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Hew we used the covariant derivatives and the tilded gauge field,

DΨa ≡ dΨa + ÃabΨb, Ãab = εabcdAcd.

It is noteworthy here that the standard quantization rule of Chern-Simons coupling gives

2πκ ∈ Z. In order to verify that this BL model nicely fits into the extended GW model

with PSU(2|2), we first reduce the number of supersymmetry by half.

R-symmetry representation. In reducing N = 8 supersymmetry to N = 4, it is useful

to keep track of how the SO(8) R-symmetry gets broken:

SO(8) ⊃ SO(4)1 × SO(4)2 ∼ (SU(2)L × SU(2)A) × (SU(2)B × SU(2)R) . (3.5)

The two SO(4) factors rotate X3,4,5,6 and X7,8,9,10 separately. For clarity, let us rename

Xa
I=7,8,9,10 as Y a

I from here on. In terms of the SU(2) factors, XI transform as (2,2,1,1)

and YI as (1,1,2,2). As for the spinors, define

ψ̃ ≡ 1 + Γ3456

2
Ψ, ψ ≡ 1 − Γ3456

2
Ψ (Γ345678910Ψ = Ψ), (3.6)

η =
1 + Γ3456

2
ε, η̃ =

1 − Γ3456

2
ε (Γ345678910ε = −ε). (3.7)

They transform under the four SU(2) factors as

ψ̃ : (2,1,2,1), ψ : (1,2,1,2), η : (2,1,1,2), η̃ : (1,2,2,1). (3.8)

Truncation from N = 8 to N = 4 amounts to setting η̃ = 0. It is clear that, among

the four SU(2) factors, SU(2)L × SU(2)R becomes the SO(4) R-symmetry of N = 4. It

is also clear from the supersymmetry variation rule (X ∼ ε̄ΓΨ) that XI and ψ form a

hyper-multiplet q, and YI and ψ̃ form a twisted hyper-multiplet q̃.

As a short comment, one can truncate the N = 8 BL model consistently down to

N = 4 by dropping the twisted hyper-multiplet: the truncated Lagrangian becomes

L = −1

2
DµX

a
ID

µXa
I +

i

2
ψaΓµDµψ

a − i

4κ
εabcdψ̄aΓIJψ

bXc
IX

d
J

+
κǫµνλ

2

(
Aabµ ∂νÃ

ab
λ +

2

3
Aabµ Ã

ac
ν Ã

bc
λ

)
− 1

12κ2

∑

IJK,a

(εabcdXb
IX

c
JX

d
K)2, (3.9)

where I here runs over 3 to 6. The truncated supersymmetry transformation rules are

δXa
I = iη̄ΓIψ

a

δψa =

(
DµX

a
I Γ

µΓI +
1

6κ
εabcdΓ

IJKXb
IX

c
JX

d
K

)
η

δÃabµ = − i

κ
εabcd η̄ΓµΓ

IXc
Iψ

d. (3.10)
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Explicit embedding. For explicit comparison, we will use the doublet indices

(α, β; σ̇, τ̇ ;σ, τ ; α̇, β̇)

for the four SU(2) R-symmetry factors. For each SU(2), indices are raised and lowered by

the invariant anti-symmetric tensor satisfying εαγε
γβ = δα

β. The pseudo-reality condition

for a “spinor” reads

(uα)
† = ūα = ǫαβuβ.

Explicit embedding of the SU(2) factors into the SO(8) is facilitated by a specific basis for

the eleven-dimensional gamma matrices,

Γµ = γµ ⊗ (−γ5) ⊗ γ5 for µ = 0, 1, 2

ΓI = 12 ⊗ γI ⊗ 14 for I = 3, 4, 5, 6

ΓJ = 12 ⊗ γ5 ⊗ γ̃J for J = 7, 8, 9, 10 (3.11)

with hermitian SO(4) gamma matrices

γI =

(
0 (eI)ατ̇

(ēI)σ̇β 0

)
, (3.12)

and the real three-dimensional gamma matrices γµ. These γµ are chosen to satisfy γ012 = 1.

Here eI = (i~σ, 1) and ēI = (−i~σ, 1) satisfy the reality condition

(eIασ̇)
∗ = ǫαβ(eI)βτ̇ ǫ

τ̇ σ̇. (3.13)

The other four gamma matrices γ̃J are numerically identical to γI , but of course carry

different SU(2) indices. In this basis, the reality condition (Majorana condition) on fermion

fields Ψ is given by

Ψ∗ = BΨ, B = Γ3579 = 12 ⊗ C ⊗ C, (3.14)

where C denote the charge-conjugation operator

C =

(
ǫ 0

0 ǫ−1

)
. (3.15)

Decomposing the spinors as

Ψ → ψ̃ασ ⊕ ψσ̇α̇, ε → η α̇
α ⊕ η̃σ̇σ, (3.16)

one can show that the reality conditions (3.14) become

(ψ̃ασ)
∗ = ǫαβǫστ ψ̃βτ , etc. (3.17)

For later convenience, let us re-express the scalars as bi-spinors via

XI → X̄ σ̇α ≡ 1

2
XI(ē

I)σ̇α, etc. , (3.18)
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whose reality condition can be read off from (3.13). After all the replacements, the La-

grangian can now be described as

L = tr(−DµX̄
aDµXa −DµȲ

aDµY a +
i

2
ψaγµDµψ

a +
i

2
ψ̃aγµDµψ̃

a)

− i

κ
εabcd

(
ψaσ̇α̇(X̄

cXd)σ̇τ̇ψ
bτ̇ α̇ + ψ̃aασ(Y cȲ d) τ

σ ψ̃
b
ατ − 4ψaσ̇α̇X̄

cσ̇αȲ dα̇σψ̃bασ

)

+
κǫµνλ

2

(
Aabµ ∂νÃ

ab
λ +

2

3
Aabµ Ã

ac
ν Ã

bc
λ

)
− V (X,Y ), (3.19)

with scalar potential V = V1(X) + V1(Y ) + V2(X,Y ) + V2(Y,X) with

V1(X) = − 4

9κ2
εabcdεaefgtr

(
XbX̄cXdX̄eXf X̄g

)
,

V2(X,Y ) = − 2

κ2
εabcdεaefgtr

(
XbX̄e

)
tr
(
Y cȲ dY f Ȳ g

)
. (3.20)

The supersymmetry transformation rules (3.4) can be recast as

δXa
ασ̇ = iη α̇

α ψ
a
σ̇α̇, δY a

σα̇ = − iψ̃aαση
α
α̇,

δψaσ̇α̇ =

[
−2γµDµX

a
ασ̇ +

8π

3n
εabcd(X

bX̄cXd)ασ̇

]
ηαα̇ +

8π

n
εabcdX

b
ασ̇η

α
β̇
(Ȳ cY d)β̇α̇,

δψ̃aασ =

[
2γµDµY

a
σα̇ +

8π

3n
εabcd(Y bȲ cY d)σα̇

]
η α̇
α +

8π

n
εabcdY b

σα̇(XcX̄d) β
α η

α̇
β ,

δÃabµ = −4πi

n
εabcdη

α
α̇γµ

(
ψdσ̇α̇Xc

ασ̇ + ψ̃dασȲ
cα̇σ
)
. (3.21)

where we used the fact that κ is quantized as 2πκ = n (n is integer). Before the de-

tailed comparison, let us first present the convenient choice of symplectic embedding of

SO(4)gauge.

Symplectic embedding. For the PSU(2|2) GW theory, the matters transform as bi-

fundamentals under the gauge group SU(2) × SU(2), or as vector under SO(4)gauge. For

clarity, we will use the latter convention throughout this section. The representation under

SO(4)gauge ×SU(2)A×SU(2)B symmetry, aside from the SU(2)L×SU(2)R R-symmetry, of

the BL model can be related to the symplectic notation of Gaiotto and Witten as follows:

a symplectic index A on hyper-multiplets can be decomposed into (a, σ̇) while B on twisted

ones can be decomposed into (b, σ). Here a, b denote the SO(4)gauge index, and σ̇ and σ

transform as doublets under SU(2)A and SU(2)B , respectively.

Under this symplectic embedding of SO(4)gauge into Sp(8), the symplectic indices sim-

plifies the index structure of various matter fields as

qAα =
√

2Xa
ασ̇, q̃Aα̇ =

√
2Y a

σα̇,

ψAα̇ = ψaσ̇α̇ ψ̃Aα = ψ̃aασ (3.22)

The symplectic invariant tensor and the gauge generators are then decomposed as

ωAB = δab ⊗ ǫσ̇τ̇ , tmAB = tmab ⊗ ǫσ̇τ̇ , (3.23)
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with SO(4)gauge group generators tmab. Clearly, the same argument goes through for the

twisted hyper-multiplets:

ω̃AB = δab ⊗ ǫστ . t̃mAB = tmab ⊗ ǫστ . (3.24)

We are now ready to show the equivalence between the BL model and the extend GW

model with the supergroup PSU(2|2).

Equivalence. Re-normalizing the supersymmetry parameters η as η α̇
α → 1√

2
η α̇
α , to-

gether with the choice of symplectic embedding above, one can obtain from (3.21) the

following supersymmetry variation rules

δqAα = iη α̇
α ψ

A
α̇ ,

q̃Aα̇ = −iψ̃Aα ηαα̇,

δψAα̇ =

[
γµDµq

A
α +

2π

3
kmn(t

m)ABq
B
β (µn)βα

]
ηαα̇ − 2πkmn(t

m)ABq
B
α (µ̃n) β̇

α̇ η
α
β̇

δψ̃Aα = −
[
γµDµq

A
α +

2π

3
kmn(t̃

m)AB q̃
B
β̇

(µ̃n)β̇α̇

]
η α̇
α + 2πkmn(t̃

m)AB q̃
B
α̇ (µn)βαη

α̇
β

δÃmµ = 2πiηαα̇ρµ(q
A
α τ

m
ABψ

B
α̇ − q̃Aα̇ τ̃

m
ABψ̃

B
α ), (3.25)

where Ãµ is defined by Ãabµ = kmn(t
m)abÃ

n
µ and we chose a basis for SO(4)gauge such that

(tm)ab = (~tL,~tR)ab, kmn = k diag(13,−13), (3.26)

where ~tL and ~tR denote self-dual and anti-self-dual SO(4)gauge generators. Here k now is

quantized to be an even integer. A useful identity in our discussion is

kmn(t
m)ab(t

n)cd =
2

k
εabcd. (3.27)

The transformation rules (3.25) are in perfect agreement with those in (2.32) of the

extended GW model in section 2, which strongly implies the equivalence between the two

models. One can also easily show that the Lagrangian (3.19) reduces to (2.31).

In summary, we conclude that the BL model in the N = 4 notation is identical to the

extended GW model with the supergroup PSU(2|2).

Mass deformation. We now show that the mass-deformed BL model proposed in [21, 23]

is in fact a special example of the mass-deformed extended GW model in section 2.3. The

Lagrangian of the mass-deformed BL model can be written as L = LBL + Lmass with

Lmass = −m
2

2
(Xa

I )
2 − i

2
mΨ̄aΓ3456Ψ

a +
4m

κ
εabcd(Xa

3X
b
4X

c
5X

d
6 +Xa

7X
b
8X

c
9X

d
10), (3.28)

which is invariant under the deformed supersymmetry transformation rules, δΦ = δBLΦ +

δmassΦ, for various fields Φ with

δmassΨ
a = mΓ3456X

a
I Γ

Iǫ. (3.29)
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Xi

Yi

Ỹi

X̃i

Figure 2: Toric diagram and crystal for (C2/Zn)2 (reproduced from [43]).

This deformation preserves the maximal, say sixteen real, supersymmetries. Let us rewrite

them in the N = 4 language. Based on the specific representation of eleven-dimensional

gamma matrices together with the choice of symplectic embedding in this section, the

deformed supersymmetry variation rules now becomes

δmassψ
a
σ̇α̇ = 2mXa

αα̇η
α
α̇ → δmassψ

A
α̇ = mqAα η

a
α̇

δmassψ̃
a
ασ = 2mY a

σα̇η
α̇
α → δmassψ̃

A
α = mq̃Aα̇ η

α̇
α , (3.30)

which agrees with (2.40). It implies the equivalence between the two models. One can also

show that the interaction terms in (3.28) reduce to those in (2.39).

3.2 Abelian quiver and M-crystal model

Review of the M-crystal. The M-crystal model for M2-branes probing the (C2/Zn)
2

orbifold was studied in [43]. The toric diagram of the orbifold and the associated crystal

diagram are reproduced in figure 2.

In the crystal diagram, the “bonds” correspond to the N = 2 holomorphic matter

super-fields. The “atoms” of the crystal encode the super-potential; take the products of

all fields ending on a given atom and sum over all atoms with opposite signs between the

white and black atoms. The result is

W =

n∑

i=1

(
XiX̃iYiỸi −XiX̃iYi+1Ỹi+1

)
, (3.31)

from which we find the F-term conditions,

XiX̃i −Xi−1X̃i−1 = 0, YiỸi − Yi+1Ỹi+1 = 0. (3.32)
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X1 X̃1 X2 X̃2 Y1 Ỹ1 Y2 Ỹ2

QX − + − + 0 0 0 0

Q̃X + − + − 0 0 0 0

QY 0 0 0 0 + − + −
Q̃Y 0 0 0 0 − + − +

Table 1: Charge assignments of (C2/Z2)
2 orbifold theory

In a more delicate but systematic way explained in [43], the crystal diagram also

determines the charges of the abelian probe theory. In the case at hand, the gauge group

turns out to be (U(1)n/U(1)D)X×(U(1)n/U(1)D)Y . The matter fields (Xi, X̃i) are charged

only under the first factor, (U(1)n/U(1)D)X , as

Xi X̃i

Qi + −
Qi+1 − +

(i = 1, · · · , n)

with all other charges vanishing. The matter fields (Yi, Ỹi) are charged under the second

factor, (U(1)n/U(1)D)Y , in the same way.

The proposal for the abelian theory in [43] was incomplete as the gauge kinetic terms

were not specified. It was assumed that the D-term potential exists and effectively com-

plexifies the gauge group, as is commonly true of gauge theories with four supercharges.

Under these assumptions, the moduli space of vacua was shown to coincide with the orb-

ifold (C2/Zn)
2. In fact, the orbifold theories have N = 4 supersymmetry with the N = 2

fields paring up to form (twisted) hyper-multiplets,

(Xi, X̃
†
i ) → qi, (Yi, Ỹ

†
i ) → q̃i, (3.33)

so the F-term and D-term conditions together are expected to result in a hyper-Kähler

quotient [44] for the moduli space of vacua.

We illustrate the identification of the moduli space of vacua using the simplest (C2/Z2)
2

orbifold. The theory has two hyper-multiplets (Xi, X̃i) (i = 1, 2) and two twisted hyper-

multiplets (Yi, Ỹi). Their charges are summarized in the table 1, and the superpotential is

given by

W = (X1X̃1 −X2X̃2)(Y1Ỹ1 − Y2Ỹ2). (3.34)

The F-term conditions require that X1X̃1 = X2X̃2 ≡ u3 and Y1Ỹ1 = Y2Ỹ2 ≡ v3. The gauge

invariant monomials u1 = X1X̃2, u2 = X̃1X2, v1 = Y1Ỹ2 and v2 = Ỹ1Y2 together with u3

and v3 parameterize the moduli space of vacua. Based on the F-term conditions, we find

u1u2 = u2
3, v1v2 = v2

3 , (3.35)

which are nothing but the algebraic descriptions for each of the two (C2/Z2) factors.

In ref. [43], it was not known how the abelian theory can be completed in a manifestly

N = 4 manner. We will show that a particular abelian quiver theory of the present paper

satisfies all the properties of such a completion.
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The connection. Consider the abelian Â2n−1 quiver theory, which has 2n nodes con-

nected to make a circle. We assign

• A U(1) gauge field Am (m = 1, · · · , 2n) to each node.

• A hyper-multiplet qi to each of the n links 〈2i− 1, 2i〉 (i = 1, · · · , n).

• A twisted hyper-multiplet q̃i to each of the n links 〈2i, 2i + 1〉 (i = 1, · · · , n).

The hyper and twisted hyper-multiplets give two ways to uplift the group U(1)2n to U(1|1)n.
The quiver diagram encodes the charges of the matter fields. The GW construction requires

the Chern-Simons coupling to be

kmn = k diag (1,−1, · · · , 1,−1)︸ ︷︷ ︸
2n

.

For this model, the scalar potential as specified in (2.31) can be simplified as

V = 2π2
n∑

i=1

[
|q̃i|2(µ2i−1 − µ2i+1)2 + |qi|2(µ̃2i−2 − µ̃2i)2

]
, (3.36)

where the squares of the moment maps are defined by (µ)2 ≡ µαβµ
αβ and µ̃2 ≡ µ̃α̇β̇ µ̃

α̇β̇.

The vacuum conditions from the scalar potential become

µ1 = µ3 = · · · = µ2n−1, µ̃2 = µ̃4 = · · · = µ̃2n, (3.37)

which coincide with the N = 4 covariant version of the F-term conditions (3.32).

To compare the gauge symmetries here with those of the M-crystal model, we make

the following change of basis for the charges,

Q+ =
2n∑

m=1

Qm, Q− =
1

2

n∑

i=1

(Q2i−1 −Q2i),

Q̂i = Q2i−2 +Q2i−1 − 1

n
Q+, Q̌i = Q2i−1 +Q2i − 1

n
Q+, (3.38)

and define a new set of U(1) gauge fields

2n∑

m=1

AmQ
m = A+Q

+ +A−Q
− +

∑

j

ÂjQ̂
j +

∑

j

ǍjQ̌
j. (3.39)

Recalling our charge assignments

Q2i−1[qi] = 1, Q2i[qi] = −1, Q2i[q̃i] = 1, Q2i+1[q̃i] = −1,

we immediately see that qi are charged under Q̂j in the same way as in the crystal model

and neutral under Q̌j . Similarly, q̃i are charged under Q̌j and neutral under Q̂j. Note

that the number of independent Q̂j (Q̌j) are (n− 1) as in the crystal model. One can also
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show from the vacuum conditions (3.37) that the moment maps associated to Âi, Ǎi gauge

groups should vanish

µ̌iαβ = 0 µ̂i
α̇β̇

= 0 . (3.40)

All matter fields are neutral under A+, so A+ decouple from the dynamics of matter

fields. Under Q−, all qi have charge +1, and all q̃i have −1. As for the Chern-Simons

coefficient, there are BF type couplings between Âi and Ǎj , another BF coupling between

A− and A+, and all other couplings vanish:

LCS =
2nk

4π
ǫµνρA−µ ∧ ∂νA+ρ + · · · , (3.41)

where we are only keeping the BF-coupling of our interest in the following discussion.2

Aside from the fact that the U(1)Q− symmetry is gauged, the vacuum conditions (3.40)

together with gauge symmetries of (Âi, Ǎi) can be understood as the standard hyper-

Kähler quotient construction for the orbifold (C2/Zn)
2. If we further mod it out by the

gauge symmetry of Q−, it appears that we are left with a seven-dimensional moduli space,

in contradiction to the well-established link between N = 4 supersymmetry and hyper-

Kähler spaces.

A similar problem was encountered in [12, 13], where there was also a problematic

U(1) gauge field (call it A−) and a decoupled U(1) gauge field (call it A+) coupled to each

other through a BF coupling. The naive result was a strange 15-dimensional moduli space

of vacua. The authors of [12] resolved the problem by dualizing A+ to a scalar σ and fixing

the problematic A− gauge symmetry by setting ∂σ ∼ A−. The idea can be carried over to

our current setup.

Starting with the Lagrangian for the present abelian quiver theories

Lquiver = −1

2
(|Dµqi|2 + |Dµq̃i|2) +

nk

2π
ǫµνρA−µ ∧ ∂νA+ρ + · · · − V (qi, q̃i), (3.42)

we replace the decoupled U(1) gauge field A+ by its dual scalar σ through introducing the

well-known Lagrange multiplier

Ldual =
1

4π
ǫµνρσ∂µF+νρ. (3.43)

(If we allow nonabelian embedding, magnetic monopoles would be present and the variable

σ would be periodic.) Here the covariant derivatives of matters are

Dµqi = (∂µ − iA−µ + · · · )qi, Dµq̃i = (∂µ + iA−µ + · · · )q̃i, etc., (3.44)

where we suppressed all terms irrelevant for our discussions. It is noteworthy again that

the decoupled A+
µ enters into the theories through the BF-coupling with A−

µ . Collecting

all interactions, one finally obtain

Ltot = −1

2
(|Dµqi|2 + |Dµq̃i|2) +

1

4π
ǫµνρ(nkA−µ − ∂µσ)F+νρ + · · · . (3.45)

2ref. [34] discusses orbifolding the SO(4) BL theory to obtain an U(1)2 gauge theory, which resembles

our (C2/Z2)
2 theory.
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Note that Ltot is invariant under the gauge transformation generated by Q−, which is

qi → eiθqi, σ → σ + nkθ, A− → A− + dθ. (3.46)

One can fix the problematic gauge field A−µ by eliminating the Lagrange multiplier F+νρ

A−µ =
1

nk
∂µσ. (3.47)

In terms of the local gauge invariant fields eiσ/nkqi, one could have a possibility of further

discrete identification depending on k if σ is periodic.

To conclude, with the field redefinition qi → e−
i

nk
σqi, the theory effectively decouples

from A− and recovers all the desired properties of the abelian M-crystal model discussed

earlier, except the possible discrete identification.

4. Discussion

We have constructed a large class of new three-dimensional N = 4 superconformal Chern-

Simons field theories with both types of hyper-multiplets and their mass deformations,

which are generically a linear quiver theory. We find that the BL theory and the M-crystal

models fit well with our theories. It remains to study physical properties of these theories

such as their moduli space of vacua and BPS states. We leave them for future works. There

are a few other directions which deserve further study.

The Gaiotto-Witten construction and its extension of the present paper probably ex-

haust all possible N = 4 superconformal Chern-Simons theories minimally coupled to

(twisted) hyper-multiplets. In ref. [6], the construction was generalized to a sigma model

whose target space is any hyper-Kähler manifold. We expect our extended construction

will also allow such generalization.

A new superconformal family of BL models as a possible theory on M2 branes were

constructed quite recently where the positive definiteness of the group space is relaxed

and so the 3-algebra structure can be associated with arbitrary ordinary Lie algebras [29 –

31]. This theory has unconventional BF couplings and the Gaiotto-Witten’s work and our

extension can be explored along this direction too. It remains to be seen how useful this

further extension, which does not fall into the classification of this paper, would be.

In the original GW construction [6], the appearance of U(N |M) or OSp(N |M) theories

were related to of D3(O3)-branes intersecting with NS5-branes in IIB string theory. It is

natural to ask whether similar interpretation is possible for our present work which includes

twisted hyper-multiplets. To see this, let us explore the following alignments of branes:

0 1 2 3 4 5 6 7 8 9

D3(O3) ◦ ◦ ◦ ◦
NS5 ◦ ◦ ◦ ◦ ◦ ◦
D5 ◦ ◦ ◦ ◦ ◦ ◦

Each of D3- and NS5-branes breaks half of supersymmetries, leading to eight real super-

symmetries. Additional D5-branes introduced above do not break supersymmetry any
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Figure 3: Brane configuration for the extended GW construction.

further. In the above brane setting, the SU(2)L × SU(2)R R-symmetry is realized as

SO(3)456 × SO(3)789. Since the hyper-multiplet in the original Gaiotto-Witten construc-

tion is associated to the presence of NS5-branes, D5 branes would lead to the appearance

of twisted hyper-multiplets. If such a suggestion works out correctly, the quiver diagram

of figure 1 would correspond to the following brane configuration.

The above argument suggests that our quiver theory have a type IIB origin. As our

theory seems to describe the physics on M2 branes on the tip of the (C2/Zn)
2 orbifold,

we want to find some duality transformation between the two approaches. Now, replace

each C
2/Zn by the singular Taub-NUT space and keep the radius of the Kaluza-Klein

circles of the Taub-NUT space to be much larger than the 11-dimensional Plank length.

Then T-dualize along two circles to get IIB string theory on a circle. Under this duality,

M2-branes turn into D3-branes and the two Taub-NUT spaces turn into NS5/D5-branes.

Therefore, we obtain precisely the IIB brane configuration discussed above, except that the

x3-direction is compactified. This duality transformation seems to be a right step toward

relating the M-theoretic aspect of our quiver theories to their type IIB interpretation.
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A. Notations and conventions

Spinor calculus. Spinor indices run α = +,−. Indices are raised or lowered by real

antisymmetric matrices ǫαβ and ǫαβ satisfying ǫαβǫ
βγ = δ γ

α .

ψα = ǫαβψ
β , ψα = ǫαβψβ .

Space-time metric has signature (− + +). The γ-matrices (γµ) βα satisfy the relations

γµγν + γνγµ = 2ηµν , γ[µγνγρ] = εµνρ. (ε012 = 1)
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The matrices (ǫγµ)αβ are real symmetric. Vectors such as xµ and ∂µ are expressed as

bi-spinors

xαβ = xµ(ǫγµ)
αβ , ∂αβ = −(γµǫ)αβ∂µ.

Spinor indices in the standard position will be omitted.

ψθ ≡ ψαθα, θ2 = θαθα, ψγµθ = ψα(γµ) βα θβ, etc.

Superspace and superfields. N = 1 superspace coordinates are xαβ and θα (both

real). Supersymmetry algebra is realized in terms of supertranslations

Pαβ = i∂αβ , Qα = i∂α + θβ∂βα.

Supercovariant derivatives are defined by

Dαβ = ∂αβ , Dα = ∂α + iθβ∂βα. {Dα,Dβ} = 2iDαβ . (A.1)

Components of general superfields Φ are defined by Dα · · ·DβΦ|, where | takes the zeroth

term of the power series in θ. Supersymmetry acts on superfields as superderivatives. Its

action on components (· · · )| can be written as

δξ(· · · )| ≡ − iξα(Qα · · · )|.

For example, scalar superfield Φ takes the form

Φ = φ+ iθψ − i

2
θ2F, φ = Φ|, ψα = −iDαΦ|, F = − i

2
D2Φ|, (A.2)

where D2 ≡ DαDα. Supersymmetry transformation law of components becomes

δφ = iξαψα, δψα = −∂ β
α φξβ − Fξα, δF = iξβ∂ α

β ψα. (A.3)

Gauge symmetry is described by superconnections on the superspace. As a simple

example, consider a column vector Φ and a row vector Φ̄ of scalar multiplets. We wish to

gauge the symmetry of unitary rotations

Φ′ = UΦ, Φ̄′ = Φ̄U †.

To do this, we introduce the covariant derivatives ∇α = Dα + Aα and ∇µ = Dµ + Aµ.

Gauge transformation acts on the superconnection in the standard manner,

A′
α = UAαU

† + UDαU
†, A′

µ = UAµU
† + UDµU

†.

The correct set of component fields is obtained by solving the Bianchi identity that arise

from {∇α,∇β} = 2i∇αβ . The explicit solution reads

[∇α,∇βγ ] = iǫαβWγ + iǫαγWβ, (A.4)

∇αWα = 0, ∇αWβ = ∇(αWβ) = Fαβ . (A.5)
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Here Wα is the gaugino superfield and Fαβ is the gauge field strength,

Fαβ = −1

2
Fµν(γµνǫ)αβ , Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]. (A.6)

In Wess-Zumino gauge, these superfields take the form

Aα = iθβAαβ + θ2χα,

Aαβ = Aαβ − iθαχβ − iθβχα +
i

2
θ2Fαβ ,

Wα = χα + θβFαβ −
i

2
θ2∇ β

α χβ. (A.7)

General gauge theory. Let us spell out the full Lagrangian for N = 1 supersymmetric

gauge theories. First, the gauge kinetic term consists of the Chern-Simons and Yang-Mills

terms

k

16π

∫
d2θTr

(
−iAW +

1

6
{Aβ , Aγ}Aβγ

)
=

k

4π
Tr

[
εµνρ

(
A∂A+

2

3
A3

)

µνρ

+ iχχ

]
,

− 1

8g2

∫
d2θTrW2 =

1

4g2
Tr (FµνFµν − 2iχ/∇χ) . (A.8)

The matter kinetic term and the superpotential term are given by

1

4

∫
d2θ∇Φ̄∇Φ = −∇µφ̄∇µφ+ F̄F + iψ̄/∇ψ − iψ̄χφ+ iφ̄χψ,

i

2

∫
d2θW (Φ) = − i

2
Wijψ

iψj −WiF
i. (A.9)

Here the matter superfields are taken to be real in the second line. We have also slightly

redefined the matter component fields,

φ = Φ|, ψα = −i∇αΦ|, F = − i

2
∇α∇αΦ|. (A.10)

The supersymmetry transformation rules for the component fields are

δφ = iξψ, δψ = −/∇φξ − Fξ, δF = iξ/∇ψ − iξχφ. (A.11)

δξAµ = −iξγµχ, δξχ = −1

2
Fµνγ

µνξ. (A.12)
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